Development of Interface components (Electronic wire/Antenna/Carriage)

Hidefumi Otsuka¹

Fujikura is working on the development of value-added products of internal and external interface components (cable assembly, antenna, carriage, etc.) for electronic devices with reductions in size and weight, high-speed transmission and ecology as the keywords. This report describes Fujikura’s development of micro coaxial assembly, film antenna and high-speed transmission cable.

1. Preface

The development of an electronic appliance such as a computer brings much contribution to society. We have been producing interface components (cable assembly, antenna, coil, etc.) to support the advancement of electronic appliances since 1970’s.

The history of electronic appliance is the history of reductions in size and weight and continuous cost cutting. Technologies for high-speed transmission, environmental conservation and radio transmission are also advancing at present. This trend is also reflected to the interface components we produce. In spite of the fact that small quantities of a variety of products are produced, they have a short life span and must be produced in a short time. While we improve our technologies of cable manufacturing, assembling, film laminating, high speed transmission, precise measuring, high frequency measuring to satisfy these requests, we develop value-added products and improve productivity (human resources reduction).

We have been wrestling with environmental issues from early on. We developed products and production methods to meet RoHS, and the needs for halogen free and energy saving. We also manufacture carriages, a part of the read and write head of an HDD, as a derivative of the coil business. We work toward achieving technologies to ensure precise resonance control and cleanliness needed for a carriage with an increase in writing density. In addition, we are improving our production technologies to supply high-performance, high-reliability products by high throughput.

2. Micro coax assembly

2.1 Development of micro coax assembly (Fig.1)

Since the introduction of a micro coax assembly to a mobile phone, we have mass produced micro coaxial assemblies.

A typical micro coaxial cable consists of an AWG # 42 (25 μm² stranded) center conductor and an outer conductor of spiral shield. It is said that an average diameter of Japanese people’s hair is from 80 μm to 120 μm. The conductor is much finer than the hair. An outer diameter of the cable is 0.29 mm. It is thinner than a core diameter of a mechanical pencil. Because this assembly has excellent noise immunity and good transmission characteristics in the band of GHz, and good flexibility, the applications are expanding as a wiring material for opening, closing, and rotating portion of small electronic devices.

We are working toward developing new products and precision assembly technologies, including auto production machines.

¹ Electronic Component R&D center

Fig. 1. Micro Coaxial core and Assemblies.
2.2 Development of flat micro coaxial cable assembly

This is a flat (ribbon) cable consisting of 3 to 5 micro coaxes coated with a resin with excellent abrasion resistance (Fig. 2, Table 1). Sheet-like wiring circuits have been conventionally used in opening and closing portions of sliding appliances need to be a height of 2 to 3 mm. On the other hand, this flat micro coaxial cable assembly (Fig. 3) is reduced to 1 to 1.5 mm in height with the wiring vertically arranged. This cable with a long bending radius can withstand bending of over 200,000 times. This flat micro coaxial cable assembly is well suited for thinner appliances in the future.

![Fig. 2. Flat (Ribbon) Micro Coaxial Cable (AWG42X4 Cores).](image)

![Fig. 3. Flat Micro Coaxial Assembly.](image)

Table 1. Flat (Ribbon) Micro Coaxial Cable Specification.

<table>
<thead>
<tr>
<th>Item</th>
<th>unit</th>
<th>AWG42</th>
<th>AWG46</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3cores</td>
<td>4cores</td>
</tr>
<tr>
<td>Inner conductor</td>
<td>Material</td>
<td>Ag coated Cu Alloy</td>
<td>Ag coated Cu Alloy</td>
</tr>
<tr>
<td></td>
<td>Structre</td>
<td>7/0.025</td>
<td>3/0.025</td>
</tr>
<tr>
<td></td>
<td>Outer Dia.</td>
<td>0.075</td>
<td>0.054</td>
</tr>
<tr>
<td>Insulation</td>
<td>Material</td>
<td>Fluoric resin</td>
<td>Fluoric resin</td>
</tr>
<tr>
<td></td>
<td>Outer Dia.</td>
<td>0.165</td>
<td>0.125</td>
</tr>
<tr>
<td>Outer conductor</td>
<td>Material</td>
<td>Sn coated Cu Alloy</td>
<td>Sn coated Cu Alloy</td>
</tr>
<tr>
<td></td>
<td>Outer Dia.</td>
<td>0.225</td>
<td>0.175</td>
</tr>
<tr>
<td>Jacket</td>
<td>Material</td>
<td>Fluoric resin</td>
<td>Fluoric resin</td>
</tr>
<tr>
<td></td>
<td>Outer Dia.</td>
<td>0.29</td>
<td>0.24</td>
</tr>
<tr>
<td>Over Jacket</td>
<td>Material</td>
<td>Fluoric resin</td>
<td>Fluoric resin</td>
</tr>
</tbody>
</table>
| | Outer Dia. | 0.35 × 0.93 | 0.35 × 1.22 | 0.35 × 1.51 | 0.30 × 0.78 | 0.30 × 1.02 | 0.30 × 1.26

Abbreviations, Acronyms, and Terms.

- **Active equalizer**: Signal arrangement device with an amplifier element
- **Assembly**: Cable attached to connector and/or other parts
- **RF—Radio Frequency**: The frequency available in wireless communication
- **Impedance matching**: Matching the input impedance with the output impedance in electric transmission channel
- **AWG—American wiring Gage**: A conductor size standard
- **Feeding Point**: The point of a signal going in and out of an antenna
- **Harmonics**: Multiple frequency of a certain frequency
- **Non-halogen materials**: Materials free of halogen (fluorine, chlorine, bromine, iodine) Halides are restricted because it is hazardous to humans
- **HDD—Hard Disk Drive**: A storage device to record and write information onto the disk to which a magnetic substance is applied
- **Pair cable**: A cable of two twisted electric wires
- **Membrane**: A sheet to which printed circuit technology is applied
- **Helical winding shielding method**: A cable shielding method
- **RoHS—Restriction of Hazardous Substances**: Banned substances directive
- **UL—Underwriters Laboratories**: Safety certification organization of America
- **USB-IF—USB Implementers Forum, Inc.**: The organization which standardizes USB and carries out the management
3. Film antenna

3.1 Development of film antenna

Conventionally, the antenna element (wireless LAN, Bluetooth, etc) for small electronic, uses sheet metal and FPC (Flexible Printed Circuit). We have manufactured FPC antennas by etching and membrane one by printing. We have developed a low-cost, small, thin film antenna as a new line-up. The film antenna can reduce the initial costs and contribute to shorter lead times. The antenna element can be easily bent along a curved surface and located in devices.

We can take charge of every phase of a project from an element design through product design, trial manufacturing, evaluations, actual tuning, and mass production. In the trial production period, we can make samples within short period (3days). Then we evaluate and offer the customized sample to our customer. Its materials are in compliance with UL, RoHS and non-halogen requirements.

3.2 Development of high value-added film antenna

We work on the development of high value-added film antennas to respond to diversified uses. We have a strong lineup of the elements of our own design. We also commercialized film antenna elements for WWAN, WiMAX, WLAN, Bluetooth, GPS, UWB, digital television, multiband antenna with many resonance frequencies (Fig.4, 5) and a multi port antenna with mutual interference robustness.

In addition, we have established various connection methods, for example, RF coaxial cable connecting (Fig.6), the metal pad forming (Fig.7), and plating of the feeding point (Fig.8) according to each customer’s feeding method. We commercialized a three-dimensional antenna which is glued to a resin molded part as the first step (Fig.9). Furthermore, we attempt to make a three-dimensional antenna element.

4. High-speed transmission cable

4.1 Development of High-speed transmission cable

The need for interface components enabling high-speed transmission becomes higher due to the proliferation of cloud computing and the need for high-resolution data processing.
We have high technology and the experience of manufacturing the world top-class high-speed transmission cable (Fig. 10) for high-end servers.

By using next-generation metal cable manufacturing technique, we are challenging the limit of a metal cable.

We developed this high-speed transmission technology and assembly technology and commercialized the cable assembly that meets the consumer standards such as USB3.0 and the HDMI as well as the world’s smallest diameter cable excellent in portability.

We work on the development of an active cable with an active equalizer and the composition cable consisting of an optical fiber and a metal cable that can be used for high-transmission.

4.2 The world’s first USB3.0-certified assembly (Fig. 11)

We developed a cable assembly in conformity with the USB 3.0, a next-generation transmission standard for a device of a transmission rate of 5 Gbps, which is 10 times as fast as USB 2.0 and received the certification from USB-IF in 2011. Furthermore, we developed a cable of world’s smallest 3.6 mm diameter (Table 2) to improve the portability of the cable (while a cable outer diameter, generally, is 5 - 6 mm).

We achieved this small cable without deteriorating signal quality by using an original insulation material and a signal shield and cabling technologies.

We use a low-loss shield differential pair cable in broad band despite its small diameter.

Besides, to achieve a low-loss plug, we tune them by a transmission analysis technology and impedance matching assembling technology.

Shield pair cable showed losses of 3 dB/m in 2.5 GHz(5 Gbps) and 6.25 dB/m in 7.5 GHz of the third harmonics, using a silver-plated soft copper conductor for the signal line, polyolefin for the dielectric, and metal foil for the shield.
The lineup offers long-type cables (up to 2 m) and small-diameter-type (up to 1 m) cables of 3.6 mm outer diameter.

The assemblies of standard A plug, standard B plug and micro B plug are available for both type products.

4.3 Development of interface cable assembly of the world smallest diameter

We developed an interface cable assembly of the world smallest diameter (2.1 mm) \(^5\).

We improved the portability of the interface cables for mobile appliances (such as Mobile PC, Smartphone, Tablet PC) connected to video devices and external data storage devices.

We developed a pocket size assembly of 20 – 50 cm in length, a minimum length.

It supports the products corresponding to each standard connector such as HDMI (Fig.12), Display port and USB3.0 and a customized product.

5. Conclusion

This report has focused on a micro coaxial cable assembly, film antenna, and high-transmission speed cable among our interface components (cable, assembly, antenna, coil etc) in the development stage.

We continue to develop the interface components of the high value-added product with reductions in size and weight, high-speed transmission and ecology as the keywords

We want to contribute to the development of the interface components of the electronic equipment in future.

References

1) Film Antenna, Fujikura Technical Journal, No.117, pp.57, 2009
2) The Film antenna which each standard supported, Fujikura Technical Journal, No.119, pp.51, 2010
3) USB3.0 Cable Assembly, Fujikura Technical Journal, No.116, pp.53, 2009
4) The world’s first USB3.0-certified assembly, Fujikura News, No.368, 2012
5) Interface cable assembly of the world’s smallest diameter, Fujikura Technical Journal, No.120, pp58, 2011