
1. Introduction

In recent years, materials informatics (MI) has attracted 
attention in the field of materials technology development. 
In October 2012, the Massachusetts Institute of Technology 
(MIT) and Samsung announced that they had developed  
a solid electrolyte with very high ionic conductivity1). 
However, a major Japanese automobile manufacturer  
had been working on almost the same substance for  
several years and had patented it in 2011. Furthermore, the 
development was done without any experiments, using 
only data and calculations, which had a huge impact on 
materials researchers around the world. This led to a global 
trend toward MI, and national projects were started one 
after another. The Japan Science and Technology Agency 
(JST) proposed the promotion of MI in 20132), and three 
ministries have since started national projects. MI is now 
recognized as a fundamental technology that supports the 
development of materials technologies, and its full-scale 
introduction is progressing at various companies.

Because of the wide range of our business domains and 
the many different types of materials that we handle, it is 
necessary to strengthen the fundamental materials technology 
that will lead to increased competitiveness of our products. 
Therefore, we have been working on MI since 2018. 
Although it is still in the process of development and no 
formal definition exists, we define MI as not only new 
materials development but also process optimization. It 
has also become clear that computer science is only a tool, 
and domain knowledge such as expertise, knowledge,  
experience, and know-how in the domain where MI is  
applied is important in order to use MI as a tool. For that 
reason, we have developed activities that lead to more 
practical results by providing opportunities for materials 
engineers themselves to learn data science and by constructing 
computational environments. By using data science to design 
the experimental conditions for compound optimization, the 
time taken to develop the cable sheaths was significantly 
shortened.
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2. Overview of main MI methods

Among the MI methods, “Bayesian optimization,”  
“regression and classification modeling,” “model  
interpretation,” and “persistent homology” are frequently 
utilized in materials technology development. These four 
methods are outlined in this section. In the cable sheath 
development described later, the two main MI methods 
that we used were Bayesian optimization and model  
interpretation.

2.1 Bayesian optimization
This method optimizes the experimental conditions  

sequentially by using past experimental data to find useful 
conditions for the next experiment3)4). Figure 1 shows an 
illustration of Bayesian optimization. In Figs. 1(a)-1(c), 
the horizontal axis shows the parameters, the vertical axis 
shows the objective variables, and the blue-circled plot 
points show the experimental results. Bayesian optimization 
first creates a probability model from the experimental 
data and estimates the mean and variance over the search 
range. The results are shown in Fig. 1(a). The blue line 
shows the mean value and the gray area shows the variance. 
Based on these results, an index called the acquisition 
function is calculated to represent the value of the  
experiment. The red line in Fig. 1(b) shows the acquisition 
function. The next experiment is conducted under the 
conditions in which the acquisition function is the highest, 
and the results are added to update the probability model, 
as shown in Fig. 1(c). Bayesian optimization is the process 
of searching for the optimal conditions by repeating these 
steps.

Conventionally, the relationship between each parameter 
and the objective variable is determined by repeating a 
large number of experiments while using a technique 
called “one factor at a time (OFAT),” which determines the 
change in the objective variable when only one variable is 
changed. However, this method tends to result in a localized 
search. Bayesian optimization, on the other hand, can 
conduct a relatively global search by appropriately setting 
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the acquisition function.
In Bayesian optimization, initial data are necessary to 

create a probability model. Several experimental design 
methods have been proposed for collecting initial data, 
such as the use of orthogonal tables and D-optimal  
design5)6). The D-optimal design is expected to obtain 
more informative initial data than the orthogonal table 
because the number of levels is fixed in the orthogonal  
table, while the D-optimal design does not require a fixed 
number of levels. The D-optimal design also has the  
advantage that the number of data to be collected can be 
freely set, making it suitable for experiments that are often 
limited by time and cost.

2.2 Regression and classification models
If there is already a large number of data, optimization 

can be achieved by inverse analysis of the regression or 
classification models that have been created. Inverse  
analysis means that the optimal conditions are found by 
repeating the forward analysis in the search space. In the 
case of optimization by inverse analysis, it is important to 

consider whether the search conditions are within the 
adaptive range of the model. In addition, it is necessary to 
accumulate the know-how for each material (product) to 
be analyzed, because it is also important to know what 
kind of features should be used in creating the model.

2.3 Model Interpretation
In general, there is a tradeoff between model accuracy 

and interpretability. Models with usually high prediction 
accuracy, such as deep learning, tend to be blackbox  
models. In MI, interpretation is often more important than 
prediction. Therefore, models with low prediction accuracy 
but high interpretability, such as decision trees, are also 
used. Recently, XAI (explainable and interpretable AI) 
techniques such as LIME, SHAP, partial dependence 
plots, and permutation importance are being increasingly 
used7). The important point is that the results obtained are 
only interpretations of the model, not causal relationships. 
The validity of the interpreted results should be confirmed 
by verification experiments.

MI− Materials informatics 
Methods to actively utilize computational and 
data science in materials development.

regression model− A subset of supervised machine 
learning in which is performed 
with correct answers given to 
training data, where the correct 
answers are numerical data.

classification model− A subset of supervised ma-
chine learning in which is 
performed with correct 
answers given to training 
data, where the correct 
answers are classifies.

OFAT− One Factor At a time 
A method to evaluate the effect of only one 
explanatory variable on the response vari-
able, fixing all but the explanatory variables 
of interest. 

D-optimal design− A method to reduce confound-
ing by designing experiments 
so that the determinant of X, 
det((X'X)-1), is minimized.

UMAP− One of the dimensionality reduction 
methods. 

Permutation importance− A method of evaluating 
the importance of an 
explanatory variable by 
using the decrease in a 
model score when a 
single feature value is 
randomly shuffled. 

Partial dependence plot− A method for interpret-
ing the interaction 
between an explanatory 
variable of interest and 
an response variable. 

 Abbreviations, Acronyms, and Terms.

Fig. 1.  Summary of Bayesian optimization. 
(a) Creation of probability model, (b) Calculation of acquisition functions, (c) Experiments and updating of probability model.
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2.4 Persistent homology
This is a mathematical analysis method for characterizing 

the topological structures such as connected components, 
holes, rings, and voids, using the mathematical concept of 
topology. For example, it was used to analyze the  
hierarchical relationship of ring structures in the atomic 
arrangement of glass, and revealed structures that could 
not be discovered in the past8)9). Structural information 
obtained from various image data and molecular dynamics 
is often used in materials development, and expectations 
for persistent homology are increasing.

3. Optimization of sheath material composition
3.1 Design of experiments for compound optimization

One of the cable sheath materials that we were  
manufacturing posed the problem that its tensile strength 
and elongation did not have a margin to the standard. 
There were also concerns that the supply of base rubber 
might cease, so it was necessary to quickly establish an 
alternative compound that would improve the tensile 
strength and elongation. For example, the sheaths consisted 
of 14 different compounding agents, and testing each of 
them at three different levels would have resulted in  
approximately 4.78 million (314) combinations, which 
would have been a huge search space. In addition, the need 
to improve the tensile strength and elongation while  
meeting various specifications made the development of 
this compound a multi-objective optimization. Some of 
these properties were trade-offs, and in the conventional 
method, the experimental design had to be based on the 
experience of the engineer in charge, and a large number 

of experiments had to be conducted. Therefore, we decided 
to utilize Bayesian optimization for the experimental  
design.

Figure 2 shows the acquisition function (the value of the 
next experimental condition) when analyzing experimental 
data at a certain time. The multidimensional experimental 
conditions are reduced to two dimensions using the UMAP 
method and then visualized. The location of the circle 
shows the experimental condition, and the size and color 
of the circle show the size of the acquisition function. 
Asterisks show the experimental conditions of the  
experimental data. It is possible to check the distribution 
of the experimental conditions over the search space. The 
condition with the highest acquisition function is the next 
experimental condition. The results are used for modeling 
again, and the acquisition function is updated. This process 
is repeated for optimization. As a result, the optimization 
was successfully conducted in approximately 30 experiments. 
Figure 3 shows the results of a comparison between the 
conventional method and the method using MI. It can be 
seen that the development period was significantly  
shortened by using MI. In addition, during the Bayesian 
optimization process, some conditions were presented that 
had not been considered by the engineers in charge, and 
when they tried the compound, it was found that relatively 
good characteristics could be obtained.

In this way, we reaffirmed that MI can be used as a tool 
to give engineers new insights and opportunities to consider.

Fig. 2. Visualization of the acquisition functions in the search space.

Fig. 3. Comparison of compound development with and without MI application.
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3.2 Model interpretation
In the compounding optimization described above, the 

interpretation of the probability model used for Bayesian 
optimization was also conducted in parallel. Figure 4 
shows the results of interpreting the probability model 
with elongation as the objective variable in terms of  
permutation importance. This figure shows the magnitude 
of the impact of each compound on the predictions of the 
model, indicating the large importance of compounding 
agents D, E, and I. The relationship between compounding 
agents D and E on the elongation was checked using a 
partial dependence plot. The results are shown in Fig. 5. 
The correlation between the target features and the  
objective variable is obtained by eliminating the effects of 
features other than the one targeted by the marginalization. 
It can be seen that the elongation is negatively correlated 
with compounding agents D and E. These results agree 
with the domain knowledge and support the effectiveness 
of MI.

4. Conclusion

The MI method was used to develop sheath materials. 
Bayesian optimization was used to design the experimen-
tal conditions, which significantly shortened the develop-
ment period. The analysis results were visualized using 
UMAP, a dimensionality reduction method. In addition, 
model interpretation was conducted using permutation 
importance and partial dependence plots. We will continue 
using MI to help develop more efficient material technol-
ogies.

Fig. 4. Identification of critical factors for compounding materials.

Fig. 5.  Correlations between D and E compounding agents and  
elongation considered by the model.
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