

Reliability test report for SR15-9/125-ACL (SM Fiber with high temperature resistant acrylate coating)

Introduction

This document describes the reliability test results on Fujikura's SR15-9/125-ACL.

1. Product specification

Operating Wavelength	1550 nm
Mode Field Diameter	9.8±0.7 μm at 1550nm
Core concentricity error	≤0.7 μm
Cladding diameter	125.0±1.0 μm
Cladding non-circularity	≤1 %
Coating diameter	245±10 μm
Attenuation	≤0.25 dB/km at 1550 nm
Fiber cutoff wavelength	≤1.3 μm
Maximum operating temperature	200 °C
Proof level	≥1 % (≥100 kpsi)

2. Test items and results

The following tests are performed to confirm the quality of SR15-9/125-ACL.

- 2-1. Environmental tests at high temperature
 - 1. Attenuation changing (200°C, 150 °C)
 - 2. Coating diameter changing (200 °C, 150 °C)
 - 3. Thermo Gravimetry and Differential thermal analysis (30 °C up to 400 °C)

2-2. Mechanical tests at high temperature

- 1. Tensile strength on short-length fiber (200 °C, 150 °C)
- 2. Dynamic fatigue value (nd) (200 °C, 150 °C)

The following sheets contain the purposes, procedures and results of the tests.

Item No.	Test Item
2-1-1	Attenuation changing (200 °C, 150 °C)

Introduction

This test is performed to evaluate the stability of attenuation of SR15-9/125-ACL by using a loss measurement system.

Procedure

Method	; Backscattering technique (ITU-T G650)		
Specimen	; 1000 m length fiber to each condition.		
Apparatus	; Optical time domain refract meter		
Wavelength	; 1310 nm or 1550 nm		
Test condition	;200 °C 7 days, 150 °C 30 days/100 days		

Results

Table 1. Attenuation variation at operating wavelength 1310nm.

	Condition	Duration	Attenuation variation	
			(dB/km, @1310 nm)	
Attenuation	200 °C	7 days	< 0.01	
changing	150 °C	30 days/100days	<u>⇒</u> 0.01	

Table2. Attenuation variation at operating wavelength 1550nm.

	Condition	Duration	Attenuation variation
			(dB/km, @1550 nm)
Attenuation	200 °C	7 days	< 0.01
changing	150 °C	30 days/100days	≥ 0.01

Fig. 2 Attenuation change in 150 $^{\circ}\mathrm{C}$

Table 1, 2 and Fig.1, 2 shows the results of attenuation variation. We obtained not more than 0.01dB/km variation at both 1310 nm and 1550 nm.

Item No.	Test Item
2-1-2	Coating resin diameter changing (200°C, 150°C)

Introduction

This test is performed to evaluate the coating resin stability of SR15-9/125-ACL.

Procedure

Specimen	; 0.1 m length fiber to each condition.			
	; Diamet	er of 125	μm clad	and 240 µm coating
Test condition	; 200°C	7days,	$150^{\mathrm{o}}\mathrm{C}$	30days

Results

Table3. Coating resin decrement.

	Condition	Duration	Coating resin decrement (µm)
Coating resin diameter changing	200 °C	7 days	25
	150 °C	30 days	10

Fig. 3. Coating resin diameter changing.

Table 3 and Fig.3 shows the results of coating resin decrement. We obtained only 25 μm coating resin decrement and it shows good coating stability.

Item No.	Test Item
2-1-3	Thermo Gravimetry and Differential thermal analysis

Introduction

This test is performed to evaluate the coating resin stability of SR15-9/125-ACL.

Thermo Gravimetry(TG)

A technique in which <u>the mass of the sample</u> is monitored against time or temperature while the temperature of the sample, in a specified atmosphere, is programmed.

Differential thermal analysis(DTA)

A technique in which <u>the difference in temperature between the sample</u> <u>and a reference material</u> is monitored against time or temperature while the temperature of the sample, in a specified atmosphere, is programmed.

Procedure

Specimen	; Coating resin of SR	15-9/125-AC	L.
Test condition	; 30 °C up to 400 °C,	2 °C /min,	at air

Results

Fig. 4. TG/DTA.

Fig.4 shows the coating resin is stable until around $250 \,^{\circ}$ C. In the condition under $200 \,^{\circ}$ C, we use the fiber without problem.

Item No.	Test Item
2-2-1	Tensile strength on short length fiber

Introduction

This test is performed in accordance with IEC and GR-20 to evaluate the tensile strength of unaged/aged fibers.

Procedure

Method ; Tensile strength of optical fibers (IEC60793-1-B2)

Specimen ; 0.5 m length of fiber per test

Strain rate ; 10 %/min.

Number of test ; 10 times

Aging condition ; Aging conditions are listed below.

	Condition	Duration
Origin	23 +/- 5 °C	NA
II' al de constante a suite a	200 °C	7 days
nign temperature aging	150 °C	30 days/100days

Criteria

Unaged fiber : Not less than 3.8 GPa at F(50) value. (GR20 recommended) Aged fiber : Not less than 3.03 GPa at F(50) value. (GR20 recommended)

Results

Table4. Tensile strength.

	Condition	Duration	F(50) value(GPa)
Origin	23+/- 5°C,	NA	5.1
II'sh ta sa sa ta sa sa 'sa	200 °C	7 days	5.3
nign temperature aging	150 °C	30 days / 100days	5.1 / 5.2

Fig. 5. Weibull distribution of tensile strength.

Weibull plot parameter of tensile strength is shown in Table 4. The origin has 5.1GPa, on the other hand, the aged (150 °C, 100days) has 5.2 GPa. It is found that the fiber has a good tensile strength.

Item No.	Test Item
2-2-2	Dynamic fatigue value (n _d)

Introduction

This test is performed in accordance with IEC and GR-20 to get the dynamic stress corrosion susceptibility parameter of unaged/aged fibers.

Procedure

Method	; Dynamic fatigue by axial tension (IEC60793-B7A)
Specimen	; 0.5 m length of fiber per test
Strain rate	; 100 %/min., 10 %/min., 1 %/min., 0.1 %/min.
Number of test	; 10 times

Criteria

The dynamic stress corrosion susceptibility parameters, $n_d,$ should be $\,\geq\,\,18.$ (GR20 recommended)

Results

Table5. Dynamic fatigue value(nd).

	Condition	Duration	n _d
Origin	23+/- 5°C,	NA	20
II. 1	200 °C	7 days	20
High temperature aging	150 °C	30 days / 100days	20 / 21

Fig. 6. Weibull distribution (origin, $n_d = 20$).

The origin has 20, on the other hand, the aged (150 °C, 100 days) has 21. It is found that our fiber's n_d is upper GR20 recommended one, even if the fiber is aged.

3. Conclusion

We developed single-mode fiber with high temperature resistance coating. It was confirmed that this fiber has small attenuation variation ($\leq 0.01 \text{dB/km}$) in 150°C or 200°C and good coating stability. The tensile strength is 5.1GPa (aged) and dynamic fatigue value (n_d) is 20(aged). It will be applied to a harsh environment like Oil & Gas industry.