
1. Introduction

Artificial Intelligence (AI) has made notable advancements
in recent years. In 2023, AI technology capable of  
generating content (generative AI) was developed and 
widely implemented, enhancing this trend. These AI  
technologies are supported by processors such as CPUs 
and GPUs, and their computations are performed  
electrically. The development and popularization of such 
technologies will continue to accelerate in the future,  
dramatically increasing the amount of data to be electrically 
computed. To sustain such an advanced information  
society, the development of processors with enhanced 
speed and reduced power consumption is imperative.

Optical computing, which employs light to execute 
computational operations, has been studied for over five 
decades as a prominent candidate, but has yet to be  
implemented in practice. However, recent advances in 
microstructure fabrication technology and optical modulation 
devices enable more precise manipulation of light,  
enhancing the feasibility of optical computing. In particular, 
the use of light in AI operations is recently expected to 
lead to the realization of high-speed and low-power- 
consumption processors.

Neural networks composed of light, called optical neural 
networks (ONNs), have mainly been implemented by 
waveguides based on silicon photonics1). On the other 
hand, the ONNs that we are investigating utilize the  
propagation and diffraction of light in free space to  
perform image processing at ultrahigh speed2). In this  
paper, we refer to this type of processor as an Optical 
Information Processor (OIP). We report that the OIP with 
a tunable light modulator achieves high accuracy in the 
classification of MNIST, which is a common task for AI 
evaluation.
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In today’s highly information-oriented society, the workload of data processing is dramatically
increasing. We investigate Optical Neural Network (ONN) as a potential technology for
higher-speed processors with lower energy consumption. In this report, we developed a novel
ONN processor that expedites quick switching of input and processing by using a unique
configuration with a liquid crystal light modulator. The capability of the processor was shown by
achieving high classification accuracy on the MNIST dataset.

2. Configuration of ONN

Figure 1 shows the concept of a conventional neural 
network and a schematic diagram of our ONN. Both  
networks consist of an input layer, intermediate layers, 
and an output layer. Neurons in each layer are  
interconnected with those in neighboring layers. During 
the operation, processing data passes from the input layer 
to the output layer, obtaining operation results on the  
output layer. In the case of image processing, the input 
data is image data, and the results, such as classification, 
detection, and super-resolution, are obtained from the 
output.

 The ONN we are investigating realizes a neural network 
by the propagation of light, modulating the intensity and 
the phase of the light by optical modulation elements. The 
input data is loaded as a wavefront composed of an  
intensity distribution or a phase distribution from the input 
layer using an intensity mask or a phase modulator,  
respectively. As the modulated wavefront propagates to 
the intermediate layer, the distribution of intensity and 
phase changes due to diffraction. The light modulator used 
as the intermediate layer further modulates the phase  
distribution. Such changes of phase distribution by the 
light modulator and the subsequent diffractions are repeated 
and the final intensity distribution of the light forms on the 
output layer as the calculation result.

The phase modulation of each intermediate layer is  
designed in advance to achieve the desired task in a  
training process that includes the light propagation  
simulation.

3. Feature of our OIP

One of the features of our OIP is the use of visible light, 
which makes it possible to use a standard laser diode as the 
light source and a CMOS sensor or photodiode as the 
output, enabling low-cost, compact, and high-speed  
processing. It also allows us to directly input and process 
information that can be discerned by human vision. 
However, the need for high precision in the fabrication and 
the alignment of the optical elements has been preventing 

1 : Advanced Research Core

2 : Technical Center for Fundamental Technologies

3 : R&D Strategy Center

45Fujikura Technical Review,2025



the realization of OIP in the visible wavelength. We have 
newly developed a unique configuration using a reflective 
liquid crystal spatial light modulator (LCoS-SLM),  
which enables the implementation of OIP in the visible  
wavelength.

4. Implementation of variable OIP

An overview of our OIP is shown in Figure 2. The  
incident light (λ = 640 nm) from a laser diode is introduced 

into the processor through a prism. The processor consists 
of a CMOS sensor with a partially reflecting mirror  
attached and an LCoS-SLM installed in parallel, facing 
each other. The laser light is reflected and propagates  
between these two elements. Four areas of Layer 1 to 
Layer 4, designated as modulation layers, are defined in 
the LCoS-SLM, each of which modulates the phase of the 
light as the light is reflected. A partial reflection mirror 
attached to the CMOS sensor transmits 10% of the light 
and leads it to the CMOS sensor. This configuration  

ONN−�Optical Neural Network 
Neural network that employs the use of 
light as a medium for data transmission.

OIP−�Optical Information Processor 
Processor that process information using light

LCoS−�Liquid Crystal on Silicon 
Liquid crystal device that modulates and 
reflects light

SLM−�Spatial Light Modulator 
Device that modulate the spatial distribution 
of intensity or phase of light

 Abbreviations, Acronyms, and Terms.

Fig. 2. Overview of our variable optical information processor.

Fig. 1. Conceptual diagrams of (a) a conventional neural network and (b) the optical neural network of this study.
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enables real-time monitoring of the light intensity  
distribution in the middle of the propagation between the 
layers as well as the final output.

Its simple configuration with two main optical elements 
makes it easy to fine-tune the setup. It also has a big  
advantage of switching between various tasks with a single 
device, since the phase modulation is implemented using a 
variable modulation device.

5. Learning and testing with MNIST dataset

MNIST3) is an image data set of handwritten numbers, 
which is widely used for training and evaluation in  
artificial intelligence. In this study, 47,995 of the 60,000 
MNIST training data were used for training, and the  
remaining 12,005 were used for validation. The input  
image data were converted from the original 28×28 pixels 
to 380×380 pixels and then embedded on the wavefront as 
the phase distribution by Layer 1.

The bandlimited-angular spectrum method4) was used to 
simulate the changes of the intensity and phase  
distributions during optical propagation.

As shown in Figure 3, ten regions were defined on the 
output plane, with each region corresponding to each 
classification class. The pattern of phase modulation in 
each layer was trained so that the light intensity in the  
region corresponding to the correct class showed the 
highest for each training data. For the test, the class  
corresponding to the region of the highest intensity in the 
output plane was recognized as the classification result for 
each input data. It was estimated from simulations that 
97% MNIST classification accuracy can be achieved with 
our ONN configuration.

To evaluate the classification accuracy on the actual  
device, the modulation patterns of Layer 2 to Layer 4 ob-
tained by the above training were applied to the LCoS-
SLM, and a total of 1000 images (100 images × 10 classes) 
were classified. Figure 4 shows examples of the light  
intensity distributions in the output plane of the experiment 

for several inputs with the phase modulation pattern  
obtained by the training. As a result, a high classification 
accuracy of about 95% was obtained on the actual device.

6. Conclusion

We reported the current achievements of our image  
processing technology using ONN, which obtains enough 
high accuracy experimentally (95%) to be as close as that 
of simulation (97%). This achievement is expected to be 
applied to practical tasks such as visual inspection and 
anomaly detection at various sites such as factories or  
infrastructures, which would support energy-saving and 
high-speed processing in the advanced information  
society.
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Fig. 4. �Examples of intensity distribution at the detection plane 
and the classification result for each input data obtained 
in the experiment.

Fig. 3. Ten areas at the final detection plane.
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