レアアース系 高温超電導線材のご紹介

株式会社フジクラ

© 2023 Fujikura Ltd.

超電導の性質

■ 超電導とは?

低温のある温度以下で物質の電気抵抗がゼロになる現象

⇒"**超電導**"現象

- 超電導の3つの臨界点
- 臨界電流: 超電導状態で流せる電流の上限
- 臨界温度:超電導状態を示す温度の上限
- 臨界磁場: 超電導状態が壊れない磁場の上限

超電導材料の変遷

フジクラにおける高温超電導線材の開発

^{© 2023} Fujikura Ltd

レアアース系高温超電導線材

製品ラインアップ

Droducto	Width	Thickness	Substrate	Stabilizer	AD Option	Critical Current [A]	
Products	[mm]	[mm]	[µm]	[µm] ^{*5}	AP Option	77K, S.F.	20K, 5T ^{*4}
FYSC-SCH04	4	0.13	75	20	Non-AP *2	≥ 165	368
FYSC-SCH12	12	0.13	75	20	Non-AP *2	≥ 550	1,104
FYSC-S12 *1	12	0.08	75	-	Non-AP *2	≥ 550	_
FESC-SCH02	2	0.11	50	20	AP *3	≥ 30	320
FESC-SCH03	3	0.11	50	20	AP *3	≥ 63	480
FESC-SCH04	4	0.11	50	20	AP *3	≥ 85	640
FESC-SCH04(05)	4	0.07	50	5	AP *3	≥ 85	640
FESC-SCH12	12	0.11	50	20	AP *3	≥ 250	1,920
FESC-S12 ^{*1}	12	0.06	50	_	AP *3	≥ 250	_

*1 銅安定化層なし、銀保護層のみ仕様は12mm幅のみ提供可、電流リード、低熱伝導アプリケーション向けでのご使用を推奨しております。

*2 人工ピンなし仕様は高温における導体、その他一般用途向けでのご使用を想定しております。

*3 人工ピンあり仕様は低温・高磁場におけるマグネットアプリケーション用途でのご使用を推奨しております。

*4 Ic@20K, 5T は参考値であり、実際の性能を保証するものではありません。

*5 銅厚さをカスタマイズする対応も可能ですので、ご要望ございましたらご相談下さい。(5µm、10µm、40µm等)

<線材構造模式図>

超電導線材の製造技術(1)

IBAD法(Ion Beam Assisted Deposition)

Assisting

Ion-Source

Buffer Layer

Substrate

- 中間層の製造方法
- フジクラ独自技術(1991年開発)
- ・ 結晶方位の揃った薄膜形成が可能

Superconducting Layer.

Buffer Layer -

Substrate

超電導線材の製造技術(2)

■ PLD法 (Pulsed Laser Deposition)

- 超電導層の製造方法
- ホットウォール型PLD法はフジクラ独自開発
- 成膜温度が極めて安定するため従来にない高品 質な超電導層の形成が可能

Cross Sectional TEM Image

Ic均一性 - 4mm幅・人エピンなし

■ 連続通電測定 - 4mm幅 (FYSC-SCH04)

■ 磁化測定 @TapestarTM - 4mm幅 (FYSC-SCH04)

Ic均一性 - 12mm幅・人エピンなし

■ 連続通電測定 - 12mm幅 (FYSC-SCH12)

■磁化測定 @Tapestar[™] - 12mm幅 (FYSC-SCH12)

Ic均一性 - 4mm幅・人エピン

■ 連続通電測定 - 4mm幅 ・人エピン (FESC-SCH04)

■ 磁化測定 @Tapestar™ - 4mm幅・人エピン (FESC-SCH04)

Ic均一性 - 12mm幅・人エピン

■ 連続通電測定 - 12mm幅・人エピン (FESC-SCH12)

I 磁化測定 @Tapestar™ - 12mm幅・人エピン (FESC-SCH12)

■ 垂直磁場方向 (B//c) における磁場中Ic特性 (FYSC) (参考データ)

サンプル : Ic = 230A@77K,Self-field(4mm幅)(超電導層厚さ : 1.9µm)

* 本測定データには東北大学金属材料研究所強磁場超伝導材料研究センターで測定されたデータが含まれます。

磁場中Ic特性 - 人エピンなし(平行磁場)

■ 平行磁場方向(B//ab)における磁場中Ic特性(FYSC)(参考データ) サンプル: Ic = 230A@77K,Self-field(4mm幅)(超電導層厚さ:1.9µm)

* 本測定データには東北大学 金属材料研究所 強磁場超伝導材料研究センターで測定されたデータが含まれます。

🜈 Fujikura

■ 垂直磁場方向(B//c)における磁場中lc特性(FESC)(参考データ)

サンプル: Ic = 200A@77K,Self-field(4mm幅)(超電導層厚さ:2.4µm)

IC - B - T 特性

n值 - B - T 特性

* 本測定データには東北大学 金属材料研究所 強磁場超伝導材料研究センターで測定されたデータが含まれます。

引張特性

- 引張試験(LN₂中)
- ・ サンプル :
 - 4mm幅・75µm厚基板+20µm厚銅めっき(FYSC-SCH04) 4mm幅・50µm厚基板+20µm厚銅めっき(FESC-SCH04)
- 測定方法:
 - 1. LN₂中、無負荷でIc測定(Ic₀)
 - 2. LN_2 中で引張歪みを印加しながらIc測定(Ic_1)
 - 3. LN_2 中で引張歪み解放後Ic測定(Ic_2)

引張応力に対するIc変化

引張歪みに対するIc変化

電源

引張試験模式図

データロガー

© 2023 Fujikura Ltd

■ 曲げ試験(LN₂中、Goldacker方式)

- ・ サンプル :
 - 4mm幅・75µm厚基板+20µm厚銅めっき(FYSC-SCH04) 4mm幅・50µm厚基板+20µm厚銅めっき(FESC-SCH04)
- 測定方法:
 - 1. LN₂中、直線状でIc測定(Ic₀)
 - 2. LN₂中で曲げ歪みを印加しながらIc測定(Ic₁) [■]
 ※曲げ方向は引張方向(超電導層が外側になるように曲げ試験を実施)
 - 3. LN_2 中で曲げ歪み解放後Ic測定(Ic_2)

曲げ試験模式図

圧縮特性(厚さ方向)

■ 圧縮試験(室温・面垂直方向・参考データ)

- サンプル:
 - 4mm幅・75µm厚基板+20µm厚銅めっき(FYSC-SCH04)
 - 4mm幅・50µm厚基板+20µm厚銅めっき(FESC-SCH04)
- 測定方法:
 - 1. LN₂中、無負荷でIc測定(Ic₀)

圧縮応力に対するIc変化

400MPaの厚さ方向

低下確認されず

圧縮応力まではIc特性

- 2. 室温で厚さ方向に圧縮負荷を印加
- 3. 圧縮負荷印加後、室温でIc測定(Ic)

厚さ方向圧縮試験模式図

圧縮特性(幅方向)

■ 圧縮試験(室温・面垂直方向・参考データ)

・ サンプル:

4mm幅・50µm厚基板+20µm厚銅めっき(FESC-SCH04)

- 測定方法:
 - 1. LN₂中、無負荷でIc測定(Ic₀)
 - 2. 室温でコイル状に巻いたサンプルの幅方向に 圧縮負荷を印加
 - 3. 圧縮負荷印加後、室温でIc測定(Ic)

幅方向圧縮試験模式図

圧縮応力に対するIc変化

100MPaの幅方向圧縮 応力まではIc特性低下 確認されず

■ 捻回試験(室温・参考データ)

・サンプル:

4mm幅・75µm厚基板+20µm厚銅めっき(FYSC-SCH04) 4mm幅・50µm厚基板+20µm厚銅めっき(FESC-SCH04)

- 測定方法:
 - 1. LN₂中、直線状でIc測定(Ic₀)
 - 2. 室温でサンプルの片側にねじり負荷を印加(捻回ピッチ=240mm、引張荷重=2kgf)
 - 3. LN₂中でねじり負荷解放後Ic測定(Ic)

捻回歪に対するIc変化

- ・サンプル:
 4mm幅・50µm厚基板+20µm厚銅めっき
 (FESC-SCH04)
 接続長50mm、Sn-Pbはんだ、超電導層側同士を接続
- 測定方法:
 - 1. LN₂中で接続抵抗を測定(DC 100A)
 - 2. 接続抵抗率を算出

接続抵抗測定結果例(FESC-SCH04)

接続サンプル模式図

サンプル (n=6)	接続抵抗(77K) (接続長50mm) [nΩ]	接続抵抗率(77K) [nΩcm²]
Avg	27.3	54.5
Max	33.6	67.2
Min	21.4	42.8

■ 測定条件

サンプル	 人工ピンあり (FESC)、4mm幅・50µm厚基板+20µm厚銅めっき 人工ピンなし (FYSC)、4mm幅・75µm厚基板+20µm厚銅張り合わせ (旧品種)
測定温度	20 - 64 K
印加磁場 (B//c)	0.04 - 4.3 T
印加磁場周波数	0.01 - 0.2 Hz

| 測定結果

* 本測定データには九州大学 超伝導システム科学研究センターで測定されたデータが含まれます。

超電導の応用機器

世界最大級Y系 5 T 高温超電導マグネット Fujikura

▶ フジクラ製超電導線材を使用
 ▶ 使用線材長: 7200 m
 ▶ 蓄積エネルギー: 426 kJ

- ▶ コイル構成: 300m×24層
 ▶ ターン数: 5775ターン
- ▶ 運転温度:24 K

© 2023 Euiikura I td

66kV/5kA 級超電導電カケーブル

■ 500A級Y系線材を用いた高温超電導ケーブル開発

- ▶ 高Ic線材による交流損失低減を検証
- ▶ 66kV-5kA級単心ケーブルシステム(10m)
- ▶ 長期荷電試験: 20 cycles (1 cycle = 8h ON / 16h OFF)
- ▶ 目標交流損失 < 2 W/m @5kA 実測交流損失: 1.4W/m@77K, 0.95W/m@67K

<ケーブル設計・仕様>

項目	仕様
フォーマー	銅撚り線 (140 mm²)、20 mmφ
HTS線材 (Ic=14 kA)	4mm幅線材、 4層 Ic = 240 A/4 mm-w
絶縁	クラフト紙 (6mm厚)
HTSシールド (Ic=12.7 kA)	4mm幅線材、2層 Ic = 240 A/4mm-w
銅シールド	銅テープ (100mm²)、44mm
ケーブル保護	不織布、45mmφ
冷却管 外層シース	ステンレス2重コルゲート管、 PEシース、114mmφ

NEDOプロジェクト(2013):フジクラ

5kA級超電導ケーブル開発に成功 1.37W/mの低交流損失を達成(2013) 現用の電力ケーブル(代表的な154kV 600MVA級)と 比較、冷却効率を考慮した上で、1/4以下の送電損失

http://www.nedo.go.jp/news/press/AA5_100196.html

F Fujikura

■ はんだ種類と加熱温度

- ・通常、融点200℃以下の低温はんだにて数分以内の加熱が推奨されます。はんだが溶けにくい場合、加熱条件(温度・時間)に十分に注意頂いた上で200℃以上に加熱頂くことも可能です。
- ・ 鉛フリーはんだも加熱条件に十分に注意頂いた上でご使用頂けます。用途や環境規制に応じて他のはんだをご使用頂くこともできます。
- ・銀保護層のみの線材(FYSC-SまたはFESC-S)ではSn-Bi系はんだ、より好ましくはSn-Bi-Ag系はんだの使用が推奨されます。(銀保護層に対しては特に銀入りはんだの方がはんだ 性が良好)

はんフ	Ĕ	Sn-Pb	Sn-Bi	Sn-Ag-Cu	Sn-In	Sn	In
組成 [wt	:%]	Sn63-Pb37	Sn42-Bi58	Sn96.5-Ag3 -Cu0.5	Sn48-In52	Sn (4N)	In (4N)
融点 [℃]]	183.0	138	217	118	231.9	156.6
電気抵抗率 [nΩm]	297K	167.3	510.6	154.0	168.1	123.1	90.3
	77K	34.6	178.8	19.4	90.3	23.0	17.5

■ 各種はんだの物性値(参考)

* 電気抵抗率は当社測定

■ 加熱時間に対するIc特性低下

人エピンなし(FYSC)

人エピンあり(FESC)

- * 通常は200℃以下、数分以内の加熱が推奨されます。
- * 200℃以上の加熱も可能ですが、加熱時間には十分に注意頂けますようお願い致します。
- * 銀保護層のみの線材でははんだ付けの際に銀くわれが生じるため、加熱条件はこの限りではありません。

その他注意事項

■ 取り扱い

- ・ 線材を折り曲げないでください。
- ・ 線材を許容曲げ直径以下に曲げないでください。
- ・ 線材を許容引張り応力以上で引っ張らないでください。
- ・ 線材に水分が付着した状態で放置しないでください。
- 線材を巻き取る際には線材が捻れないようにしてください。
- 線材を切断する際には、線材を固定してから切断してください。絶縁テープを巻いている場合は固定せず に切断すると、絶縁テープがほどけてしまう場合があります。

■ 保管方法

- 高温・多湿を避け、室温、乾燥した雰囲気で保管してください。
- 水が掛からない状態で保管してください。
- ・ 結露しない環境で保管してください。
- ・ 腐食性雰囲気にさらさないでください。
- 線材やリールの上に重いものを載せないでください。
- リールが変形しないように保管してください。

■ 環境規制

• 超電導線材および出荷時の梱包資材は全てRoHS規制に準拠しています。

輸出管理

• フジクラ製超電導線材は輸出規制貨物に該当します。

お問い合わせ先

日本・その他 地域			
株式会社フジクラ 超電導事業推進室	千葉県佐倉市六崎1440 電話:043-484-3048 E-mail:ask-sc@jp.fujikura.com www.fujikura.co.jp		
ヨーロッパ			
Fujikura Europe Ltd.	C51 Barwell Business Park, Leatherhead Road Chessington, Surrey, KT9 2NY, UK Phone: +44-20-8240-2000 E-mail: superconductor@fujikura.co.uk www.fujikura.co.uk		
アメリカ			
Fujikura America, Inc.	2560 N. 1st Street, Suite 100, San Jose, CA 95131, US Phone: +1-408-988-7423 E-mail: HTS@fujikura.com		
in www.linkedin.com/company/fujikura-superconductor			