Introduction of Fujikura RE-based High Temperature Superconductor

Superconductor Business Development Division Fujikura Ltd.

Characteristics of Superconductivity

Superconductivity

An electrical resistivity becomes exactly zero which occurs in certain materials below a characteristic temperature.

■ Three Critical Points at Superconducting State

- Critical Current --- Maximum current
- Critical Temperature --- Maximum temperature
- Critical Field --- Maximum magnetic field

Historical Discovery of Superconductor

Low Temperature Superconductors (Metal-based)

High Temperature
Superconductors
(Copper-Oxide-Based)

- Cooling below LHe temperature required
- Practical use in conventional superconducting applications
- Critical temperature higher than LN₂ temperature
- Verification stage for practical use in indutrial applications
 Bismuth (Bi): 1st generation (1G)

Yttrium (Y) or Rare-Earth: 2nd generation (2G)

Historical Development of HTS at Fujikura

RE-based HTS Tape Products

■ Typical Specifications

Products	Width	Thickness	Substrate	Stabilizer	AD Ontion	Critical Current [A]	
	[mm]	[mm]	[µm]	[µm] *5	AP Option	77K, S.F.	20K, 5T *4
FYSC-SCH04	4	0.13	75	20	Non-AP *2	≥ 165	368
FYSC-SCH12	12	0.13	75	20	Non-AP *2	≥ 550	1,104
FYSC-S12 *1	12	0.08	75	_	Non-AP *2	≥ 550	_
FESC-SCH02	2	0.11	50	20	AP *3	≥ 30	320
FESC-SCH03	3	0.11	50	20	AP *3	≥ 63	480
FESC-SCH04	4	0.11	50	20	AP *3	≥ 85	640
FESC-SCH04(05)	4	0.07	50	5	AP *3	≥ 85	640
FESC-SCH12	12	0.11	50	20	AP *3	≥ 250	1,920
FESC-S12 *1	12	0.06	50	_	AP *3	≥ 250	_

^{*1} Non-copper stabilizer specification is available in only 12mm-wide for current lead or low thermal conducting applications.

Stabilizer [Cu plating] 20μm Protection layer [Ag] 2μm Superconducting Layer [GdBCO] 2 μm / [EuBCO+BHO] 2.5 μm Buffer layer [MgO, etc.] 0.7μm Substrate [Hastelloy®] 75 / 50 μm

^{*2} Non-AP specification is mainly for conductors or other general use at relatively higher temperature.

^{*3} Artificial pinning specification is mainly for use in magnet applications at low temperature and high magnetic field.

^{*4} Ic at 20K,5T is a reference value and no guarantee of the actual performance.

^{*5} If requested, an option customizing copper thickness is also available. (e.g., $5\mu m$, $10\mu m$ or $40\mu m$)

Key Technology for High Ic Performance

■ Ion Beam Assisted Deposition; IBAD

- Fabricating process of buffer layer
- Fujikura original technique (Developed in 1991)
- IBAD enables to fabricate high-textured buffer layer.

1km-length PLD-CeO₂/IBAD-MgO Substrate

Key Technology for High Ic Performance

Pulsed Laser Deposition; PLD

- Fabricating process of superconducting layer
- Hot-wall heating system is Fujikura original.
- Stable temperature during deposition enables higher superconducting performance than conventional type PLD.

Cross Sectional TEM Image

Ic Uniformity of 4mm-wide - Non AP

■ Current conduction measurement - 4mm-wide without AP (FYSC-SCH04)

■ Magnetic measurement @TapestarTM - 4mm-wide without AP (FYSC-SCH04)

Ic Uniformity of 12mm-wide - Non AP

Current conduction measurement - 12mm-wide without AP (FYSC-SCH12)

■ Magnetic measurement @TapestarTM - 12mm-wide without AP (FYSC-SCH12)

Ic Uniformity of 4mm-wide - AP

Current conduction measurement - 4mm-wide with AP (FESC-SCH04)

■ Magnetic measurement @TapestarTM - 4mm-wide with AP (FESC-SCH04)

Ic Uniformity of 12mm-wide - AP

Current conduction measurement - 12mm-wide with AP (FESC-SCH12)

■ Magnetic measurement @TapestarTM - 12mm-wide with AP (FESC-SCH12)

Typical in-field Ic performance without artificial pinning (FYSC) (Reference)

Sample : Ic = 230A at 77K, Self-field (4mm-wide) (Superconducting layer thickness: $1.9\mu m$)

Perpendicular Magnetic Field (B//c)

^{*} This work includes some data measured at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

In-field Ic Performance - Non AP (B//ab) Fujikura

Typical in-field Ic performance without artificial pinning (FYSC) (Reference)

Sample : Ic = 230A at 77K, Self-field (4mm-wide) (Superconducting layer thickness: $1.9\mu m$)

Parallel Magnetic Field (B//ab)

^{*} This work includes some data measured at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

In-field Ic Performance - AP (B//c)

■ Typical in-field Ic performance with artificial pinning (FESC) (Reference)

Sample : Ic = 200A at 77K, Self-field (4mm-wide) (Superconducting layer thickness: $2.4\mu m$)

Perpendicular Magnetic Field (B//c)

^{*} This work includes some data measured at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

Tensile Stress

Load cell

■ Tensile stress evaluation at LN₂ temperature (Reference)

- Sample : $4mm\text{-wide, 75}\ \mu\text{m-thick Hastelloy} + 20\ \mu\text{m-thick Cu plating (FYSC-SCH04)}$ $4mm\text{-wide, 50}\ \mu\text{m-thick Hastelloy} + 20\ \mu\text{m-thick Cu plating (FESC-SCH04)}$
- Measurement method :
 - 1. Ic measurement without load in LN₂ (Ic₀)
 - 2. Ic measurement with applying tensile strain in LN_2 (Ic₁)
 - 3. Ic measurement without load (Ic₂) after applying tensile strain in LN₂

Schematic of tensile test

Ic/Ic₀ versus tensile stress

Ic/Ic₀ versus tensile strain

Bending Property

■ Bending property evaluation at LN₂ temperature (Reference)

- Sample:
 - 4mm-wide, 75 μm-thick Hastelloy + 20 μm-thick Cu plating (FYSC-SCH04) 4mm-wide, 50 μm-thick Hastelloy + 20 μm-thick Cu plating (FESC-SCH04)
- Measurement method ("Goldacker" continuous bending method):
 - 1. Ic measurement in straight in LN_2 (Ic_0)
 - 2. Ic measurement with applying bending strain at LN_2 (Ic₁)
 - * Bending direction is tensile direction with superconducting layer outside.
 - 3. Ic measurement in straight (Ic₂) after applying bending strain in LN₂

Schematic of bending test

Ic/Ic₀ versus bending radius

No Ic degradation for 50µmt substrate observed below the measurement limit bending radius of 5mm

Compressive stress evaluation in thickness direction at RT (Reference)

- Sample :
 - 4mm-wide, 75 µm-thick Hastelloy + 20 µm-thick Cu plating (FYSC-SCH04) 4mm-wide, 50 µm-thick Hastelloy + 20 µm-thick Cu plating (FESC-SCH04)
- Measurement method :
 - 1. Ic measurement in LN₂ (Ic₀)
 - 2. Apply compressive load in thickness direction of the sample at room temperature
 - 3. Ic measurement in LN₂ (Ic) after removing compressive load

Schematic of compressive test in thickness direction

Ic/Ic₀ versus compressive stress

No Ic degradation observed below 400 MPa of compressive stress in thickness direction

Compressive Stress in Width Direction

Compressive stress evaluation in width direction at RT (Reference)

- Sample:
 4mm-wide, 50 μm-thick Hastelloy + 20 μm-thick Cu plating (FESC-SCH04)
- Measurement method :
 - 1. Ic measurement in LN_2 (Ic_0)
 - 2. Apply compressive load in width direction of the coiled sample at room temperature
 - 3. Ic measurement in LN₂ (Ic) after removing compressive load

Coiled wire sample Inner diameter: 30mm Wire length: 1.35m

Schematic of compressive test in width direction

Ic/Ic₀ versus compressive stress 1.2

No Ic degradation for 50µmt substrate observed below 100 MPa of compressive stress in width direction

Twisting Property

■ Twisting test at room temperature (Reference)

- Sample:
 - 4mm-wide, 75 μ m-thick substrate + 20 μ m-thick Cu plating (FYSC-SCH04) 4mm-wide, 50 μ m-thick substrate + 20 μ m-thick Cu plating (FESC-SCH04)
- Measurement method :
 - 1. Ic measurement in straight in LN₂ (Ic₀)
 - 2. Apply twisting load at one side of the sample at room temperature (Twist pitch=240mm, Tension load=2kgf)
 - 3. Ic measurement in LN₂ (Ic) after removing twisting load

Ic/Ic₀ versus bending radius

$$\varepsilon = \frac{\phi^2}{2L^2} \left(x^2 - \frac{w^2}{12} \right)$$

M. Takayasu, et al., AIP Conf Proc 1219, 337 (2010)

Joint Resistivity

■ Solder lap joint resistivity (Reference)

• Sample:

4mm-wide, 50 μ m-thick substrate + 20 μ m-thick Cu plating (FESC-SCH04)

Joint sample with lap joint length of 50mm using Sn-Pb solder, with both superconducting layer sides facing

- 1. Measure joint resistance in LN₂ (at 77K) with DC of 100A
- 2. Calculate a solder lap joint resistivity

Schematic of sample

Example measurement results of FESC-SCH04

Sample (n=6)	Joint resistance at 77K (50mm) [nΩ]	Joint resistivity at 77K [nΩcm²]
Avg	27.3	54.5
Max	33.6	67.2
Min	21.4	42.8

AC Loss (Reference)

■ Measurement Condition

Sample	 Artificial pinning (AP; FESC) type, 4mm wide, 50um thick substrate + 20um thick copper plating Non-artificial pinning (Non-AP; FYSC) type , 4mm wide, 75um thick substrate + 20um thick copper laminate (Old specification) 		
Temperature	20 - 64 K		
Magnetic field (B//c)	0.04 - 4.3 T		
Magnetic field frequency	0.01 - 0.2 Hz		

■ Measurement Results

This work includes the data measured at Kyushu University, Japan.

Applications of Superconductor

Advantages of Rare-Earth-based HTS

- Higher operating temperature (no use of liquid helium)
- Higher critical current at higher magnetic field
- Smaller size and lighter weight

NMR

Development of 5 T 2G HTS Magnet

- Fujikura's 10 mmw Y-based HTS wire
- \triangleright Total tape length: 7.2 km (300 m x 24)
- Stored energy: 426 kJ

- Composed of 24 pancake coils
- Total number of turns: 5775
- Operating temperature : 25 K

5 T 2G HTS cryocooled magnet developed successfully in **2012**

The magnet excitation performance up to 5 T retained so far after the fabrication

M. Daibo, et al., IEEE Trans. Appl. Supercond. 23-3 (2013) 4602004

66kV/5kA Class Power Cable (NEDO)

■ Development of HTS power cable with 500A class HTS tape

- > Verification of AC Loss reduction with higher Ic HTS
- ➤ Single-core in one pipe cable system /66kV-5kA /10m long
- > Long term current loading test: 20 cycles

(1 cycle : 8h ON / 16h OFF)

➤ Target AC loss : < 2 W/m @5kA

Measured AC loss: 1.4W/m@77K, 1.0W/m@67K

< Design and Fabrication >

Items	Specifications				
Former	Stranded copper wires (140 mm²), 20 mmφ				
HTS conductor (Ic=14 kA)	4mm-wide wires, 4 layers Ic = 240 A/4 mm-w				
Electric insulation	Craft papers (6mm-thick)				
HTS shield (Ic=12.7 kA)	All 4mm-w tapes, 2 layers Ic = 240 A/4mm-w				
Copper shield	Copper tapes (100mm²), 44mm				
Core protection	non-woven fabric, 45mmφ				
Cryostat / Outer sheath	Stainless steel double corrugated pipes with PE jacket, 114mmp				

Fujikura has succeeded in developing REbased HTS power cable with 5 kA and extremely low AC loss 1.4 W/m in 2013.

http://www.nedo.go.jp/news/press/AA5_100196.html

This work includes results supported by NEDO

Basic Instruction of Soldering

■ Recommendable solders

- It shall be generally recommendable to use solders with low melting point and to heat below 200 degrees C within few minutes. In case it would be difficult to melt solder, heating over 200 deg C could be also acceptable with full attentions.
- Pb-free solder could be available with full attention to heating condition. Other solders could be also available depending on application designs or environmental regulation.
- Sn-Bi based or more preferably Sn-Bi-Ag based solder would be recommendable for HTS tapes with silver protection layer such as FYSC-S or FESC-S series. Especially solder including Ag is relatively easy to solder silver protection layer.

Physical properties (Reference)

Solde	er	Sn-Pb	Sn-Bi	Sn-Ag-Cu	Sn-In	Sn	In
Composition [wt%]	ו	Sn63-Pb37	Sn42-Bi58	Sn96.5-Ag3 -Cu0.5	Sn48-In52	Sn (4N)	In (4N)
Melting poir [deg C]	nt	183.0	138	217	118	231.9	156.6
Resistivity [nΩm]	297K	167.3	510.6	154.0	168.1	123.1	90.3
	77K	34.6	178.8	19.4	90.3	23.0	17.5

^{*} Resistivity is measured value at Fujikura.

Basic Instruction of Heating Temperatures Fujikura

Ic degradation during heating

- * It shall be generally recommendable to heat below 200 degrees C within few minutes. Heating over 200 degrees C could be also acceptable with full attentions to heating condition.
- * These conditions shall not be necessarily applicable to HTS tapes with silver protection layer due to soldering erosion of silver layer.

Notes

Handling

- Do not exceed the minimum bending radius. The tape will be permanently damaged.
- Do not exceed the maximum tensile stress. The tape will be permanently damaged.
- Do not expose the tapes to moisture.
- Avoid twisting the tapes during spooling.
- The insulating tape may loosen when cut. To avoid this clamp both sides while cutting.
- Do not touch the tapes directly with bare hands. This will cause oxidation and discoloration.
- Do not apply excessive pressure.

■ Storage

- Electroplated copper is susceptible to Oxidation. The storage in sealed conditions are recommendable.
- Store at room temperature, away from heat and moisture.
- Avoid condensation or exposure to corrosive substances.
- Do not place heavy objects on superconducting tapes and reels.

Environmental regulation

All the HTS tapes and packing materials are compliant to RoHS.

Export control

 The export of the HTS tapes are controlled under Foreign Exchange and Foreign Trade Law of Japan.

Contact Information

Japan and other areas

Fujikura Ltd.

1440, Mutsuzaki, Sakura-shiChiba 285-8550, Japan

Phone: +81-43-484-3048

E-mail: ask-sc@jp.fujikura.com

www.fujikura.co.jp

Europe

Fujikura Europe Ltd.

C51 Barwell Business Park, Leatherhead Road

Chessington, Surrey, KT9 2NY, UK

Phone: +44-20-8240-2000

E-mail: superconductor@fujikura.co.uk

www.fujikura.co.uk

America

Fujikura America, Inc.

2560 N. 1st Street, Suite 100, San Jose, CA 95131, US

Phone: +1-408-988-7423 E-mail: HTS@fujikura.com

www.linkedin.com/company/fujikura-superconductor